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Abstract
It is shown that the theory of elasticity under hydrostatic pressure p at zero
temperature is unified and simplified by the use of the Gibbs free energy G,
rather than the energy E . The minima of G, but not of E , give the equilibrium
structure; the second derivatives of G, but not of E , with respect to strains at the
equilibrium structure give the zero-temperature elastic constants; the stability
of a phase at p is then determined by the same Born stability conditions used
at p = 0 when applied to the elastic constants from G. Examples are noted of
mistakes due to use of E rather than G.

Modern first-principles total-energy calculations based on the Kohn–Sham equations with
corrections have made possible reliable and reasonably accurate determination of crystalline
equilibrium structures and elastic constants. See, for example, [1] for tetragonal structures
and [2] for hexagonal structures, which are the structures used in the discussion here. However
the extension of such calculations to crystals under hydrostatic pressure p introduces a number
of complications that have not always been considered in recent work. In this paper we point
out these complications, note some examples where they have been overlooked and show how
they are readily dealt with by use of the Gibbs free energy G ≡ E + pV − T S, where V is the
volume, T the absolute temperature and S the entropy, in the study of elasticity at p.

The existence of a Gibbs free energy for systems under hydrostatic pressure has been
pointed out by Wang et al [3], although they find that under anisotropic stress a true
thermodynamic potential does not exist. Hence we can assume such a free energy for analysis
of elasticity under pressure. However at finite T the entropy term in G is less reliably known
than the energy calculated by first-principles band-structure programs, hence the entropy term
and the temperature variable will be dropped in the discussion below, which will then apply
at T = 0. Addition of the T S term and the temperature dependence of E , when these
quantities can be reliably calculated, would generalize the discussion to apply to isothermal
elastic constants at any T . The discussion and illustrations given here will be for body-centred
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tetragonal (bct) and hexagonal close-packed (hcp) structures, but many remarks will apply to
other structures.

The first complication in discussing systems under pressure is that it is necessary to find
the equilibrium structure at each p. The equilibrium structure at p is not at a minimum of E ,
but is at a structure at which the stress at each surface is −p; e.g., the stresses on the faces of a
tetragonal structure should be σ1 = σ2 = σ3 = −p. Thus an advantage of using G rather than
E in discussing systems at p is that G is an extremum at equilibrium with respect to all small
changes of structure in a system held at constant p and T , and if the extremum is a minimum
the phase is stable.

Hence, to find a stable equilibrium bct or hcp structure at p requires finding the values
of the lattice constants a and c at which G(a, c; p) ≡ E(a, c) + pV (a, c) has a minimum.
This two-variable minimization problem is readily solved for bct and hcp structures by use
of the epitaxial Bain path (EBP), which is discussed in [1] for p = 0, but is generalized here
for finite p. The generalized EBP is defined at each a by finding the value of c for which
the stress in the c direction is −p, hence σ3 = (1/V )(∂ E/∂ε3) = (c/V )(∂ E/∂c) = −p.
The calculation at each a gives one value of the functions cEBP(a; p), EEBP(a; p) and
GEBP(a; p) ≡ EEBP(a; p)+ pV EBP(a; p). The minimum of GEBP(a; p) at (a0, c0 ≡ cEBP(a0))
is then a minimum of G(a, c; p), because the derivative of G(a, c; p) vanishes in the tetragonal
plane (coordinates a and c) in two directions, i.e. along the EBP direction because G is
at a minimum on the EBP and along the c direction because (c/V )(∂G/∂c)a is given by
(c/V )(∂ E/∂c)a + (pc/V )(∂V/∂c)a = −p + p = 0, since V is linear in c. Hence the
derivative of G(a, c; p) vanishes in the tetragonal plane in all directions and (a0, c0) is an
extremum of G(a, c; p).

Figure 1 illustrates the functions EEBP and GEBP for ferromagnetic (FM) Fe at p =
1000 kbar plotted against the tetragonal shape parameter c/a. All total-energy calculations
were made with Wien97 [4], which is a well tested reliable full-potential band structure
program applicable to general structures. The energies are converged to a few hundredths
of a mRyd/atom; lattice constants of metals usually agree with experiment to within 1–2%
and elastic constants to within 10–15%. Note that G(a, c; p) has a minimum at c0/a0 = 1,
the bcc structure, but that E clearly does not have a minimum at (a0, c0), since E has a finite
slope along the EBP at (a0, c0).

A second complication for systems under pressure is that the elastic constants are not
given by second derivatives of E with respect to strains. Rather they are given by second
derivatives of G with respect to strains at (a0, c0), the minimum of G at p. Define ci j ≡
(1/V )∂2G(a, c; p)/(∂εi∂ε j) and c̄i j ≡ (1/V )∂2 E(a, c)/(∂εi∂ε j), where both derivatives are
at (a0, c0) and the ε j are Eulerian strains. Then the correct elastic constants ci j are related to
the c̄i j by ci j = c̄i j + (p/V )∂2V (a, c)/(∂εi∂ε j).

Since V is a known algebraic function (a cubic) in the components of the three lattice
vectors defining the unit cell, derivatives of V with respect to the strains εi , which are small
relative changes in those components, can be found analytically. Let ci j = c̄i j + δc̄i j . Then,
for example, using V = a1a2c/2,

δc̄12 = (p/V )(∂2V/(∂ε1∂ε2)) = (pa1a2/V )(∂2V/(∂a1∂a2)) = p,

and

δc̄11 = (p/V )(∂2V/(∂ε2
1)) = (pa2

1/V )(∂2V/∂a2
1) = 0.

References [1] and [2] give the six appropriate strains for each ci j for tetragonal and hexagonal
structures. Differentiation of V by these strains then gives the following simple pressure
contributions to the ci j from the pV term in G:
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Figure 1. The energy E and the Gibbs free energy G along the EBP of bct FM Fe at a hydrostatic
pressure of 1000 kbar. The bcc phase is at the minimum of GEBP at c/a = 1. For clarity the
minimum of the EEBP curve is set to zero and the minimum of the GEBP curve is shifted down by
392 mRyd/atom. The minimum of EEBP is 46 mRyd/atom above the bcc ground state at p = 0.

c11 = c̄11, c12 = c̄12 + p, c13 = c̄13 + p,

c44 = c55 = c̄44 − p/2 = c̄55 − p/2, c66 = c̄66 − p/2.

These pressure corrections to the c̄i j were derived by Barron and Klein [5] by studying
stress–strain relations under stress. In [6–8] the elastic constants are incorrectly calculated
from second derivatives of E rather than G. However, the correct elastic constants are used by
Karki et al [9] to determine stability under pressure. In figure 2 the shear constants of FM bcc
Fe are plotted as functions of pressure to illustrate the difference between ci j and c̄i j . Note that
the instability of FM bcc Fe is shown by the vanishing of C ′ ≡ (c11 −c12)/2 at p = 1500 kbar,
whereas C̄ ′ ≡ (c̄11 − c̄12)/2 requires a much higher pressure to vanish. The use of E in [8]
rather than G to determine stability is the reason that the instability of FM bcc Fe was wrongly
stated in [8] to occur above 2000 kbar.

Note that the bulk modulus B , unlike the ci j , is a second derivative of E , rather
than of G. Now B measures the change in equilibrium V produced by a change in p,
i.e. B = −V (d p/dV ), which uses an ordinary derivative since at each p there is a unique
equilibrium V and a unique equilibrium E . Then the dE produced by dV is given by the external
work done by the system, dE = −p dV , hence p = −dE/dV and B = V (d2 E/dV 2). Since
a cubic system remains cubic under pressure, the equilibrium E(V ) can be directly calculated
as V changes, hence p(V ) and B(V ) from the derivatives of E(V ). Thus the equation of state
p(V ) is correctly calculated for FM bcc Fe by Stixrude et al [10] and shown to agree well with
experiment.

The definitions of the elastic constants in terms of G mean that the usual Born stability
conditions [11] on the ci j derived at p = 0, where they check that E is a minimum for all
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Figure 2. The shear elastic constants C ′ ≡ (c11 − c12)/2 and c44 of FM bcc Fe as functions of
hydrostatic pressure p. The quantities C ′ and c44 are the correct elastic constants derived from
derivatives of G at equilibrium at each p. Comparison is made with C̄ ′ and c̄44 derived from
derivatives of E at the same equilibrium at p. The vanishing of C ′, but not of C̄ ′, shows that bcc
FM Fe becomes unstable at 1500 kbar.

strains, can be used at finite p to check that G is a minimum for all strains, hence that the
system is stable.

In summary, G serves at finite p the same function as E at p = 0: its minima give
the equilibrium states, its derivatives with respect to strain give the elastic constants and the
occurrence of instability corresponds to the disappearance of one of its minima.
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